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An old, wise, and widely held attitude in Statistics is that modest 

intervention in the design of an experiment followed by simple 

statistical analysis may yield much more of value than using very 

sophisticated statistical analysis on a poorly designed existing data set.   

 

In this sense, good inductive learning is active and forward looking, not 

passive and focused exclusively on analyzing what is already given.   

 

In this talk I review three different approaches for how a decision 

maker might actively frame her/his probability space rather than being 

passive in that phase of decision making. 



Method 1:  Assess precise/determinate probabilities only for the set of 

random variables that define the decision problem at hand.  Do not 

include other "nuisance" variables in the space of possibilities.   In this 

sense, over-refining the space of possibilities may make assessing 

probabilities infeasible for good decision making. 

 

Example 1.1:   

Random sampling: the “nuisance” of individual tags and  

designing an experiment to prove.  (K-S, 1990). 

 

Example 1.2:  

Juhl’s (1993) incompleteness for formal learning with computable 

Bayesian methods.  



Example 1.1 

• Simple Random Sampling – informal version. 

Design an experiment to prove to a general readership what is the 

percentage kZ in a large population (> 10
6
) that bear property Z. 

• A familiar approach is to use overt randomization to select a 

sample (using random-numbers) and to perform routine statistical 

inference on the observed z-values in the sample. 

For instance, with a sample of 100 randomly selected individuals from 

the population, the probability is at least .95 that the percentage of Z in 

the sample,   z , differs from kZ by no more than 10%. 

    P( |kZ -    z |    .10 )    .95    (approximately) 

 



However, in order to apply overt randomization, in order to use 

random numbers to sample the population, the individuals require tags  

ti (i = 1, … , 10
6
). 

Then a straightforward formalization of the probability space for the 

inference about the percent of Z in the population, kZ, has as the sample 

space for the data the 100 pairs  

{(zj, tj): j = j1, …., j100} 

where the j’s are the 100 randomly selected  numbers. 

However, unless the tags are irrelevant about Z, 

P( |kZ -    z |    .10 )       P( |kZ -    z |    .10  | {tj1, …, tj100} ). 

For example, let the tags be individual Social Security numbers, which 

reveal considerable information about, e.g., age and gender.  Then the 

tags introduce “nuisance” parameters into the statistical reasoning.  



If, e.g., Latanya Sweeney (2006) is among the readership of your 

publication, the familiar statistical inference based on overt 

randomization will no longer be compelling for her once the tags for 

the sampled individuals are revealed.   

BUT – the clever statistician can be careful to include the z-values but 

NOT to include the tags in the sample space for probabilistic analysis.   

 

I.J.Good (1971, #679) notes that sometimes a Bayesian can make sense  

of a Classical Statistical procedure by avoiding parts of the data, 

employing what he calls a Statistician’s Stooge. 

 

I.Levi (1980, chapter 17) makes a similar distinction between  

data as evidence and data as input! 



Example 1.2: Juhl’s (1993) incompleteness for formal learning with 

computable Bayesian methods.  

 Let T be a recursively enumerable but not recursive set of integers, 

e.g., the Godel-numbers of theorems of a particular first order theory.   

The formal learning problem is to decide whether an integer k belongs 

to T or not relative to a “data stream” {di} of the elements of T.   

 

 The challenge Juhl sets for Bayesian theory is to construct a 

straightforward probability analysis where, e.g., the (posterior) 

probability for the event Ek: k  T, given the growing data stream {di}, 

converges to the truth value of Ek. 

limm  Prob(Ek | d1, …, dm} = indicator for Ek. 

 



There are two familiar but significant impediments that block a 

straightforward Bayesian solution of the kind Juhl requests. 

(1) Given ordinary mathematical background knowledge, in each 

measure space the random variable Ek is a constant – either it is 

1 (if k  T) or it is 0 (if k  T).  So, a coherent P(•), has P(Ek) =1, 

or P(Ek) = 0, respectively. 

(2) But as set T is re and not recursive – theoremhood is undecidable 

the coherent probability from (1) is not computable. 

This leads Juhl (1993) to conclude: 

COROLLARY 1. There exist problems solvable by a recursive method but 

that no computable coherent Bayesian can possibly solve. 

Aside: The problem is solvable by positing “k  T” and changing to    

“k  T” if and only if k appears among the data stream {d1, …, dm, …}. 



However, the computable Bayesian decision maker faced with this 

formal learning problem can solve the problem by taking charge of the 

measure space over which probability is defined. 

(Counter) Example 1.2
+
. 

Let X be an integer random variable.  Partially define the probability 

distribution for X as follows:   

• P( X = dm | X  T ) = 2
-m

   Given that X  T, let P(X = dm) = 2
-m

.   

• P(X  T) = .4.  Unconditionally, P(X  T) < P(X  T). 

The Statistician’s Stooge knows that X = k, but that is not part of the 

Statistician’s evidence.  The Stooge checks whether X = dm or not and 

reports just that fact to the Statistician as the evidence dm. 

 Then   limm  Prob( X  T | d1, …, dm)   

is a coherent, computable Bayesian solution to the learning problem. 



Method 1 for getting to know your probabilities is to avoid including 

more in the sample space than is required for robust inference – 

inference free of nuisance parameters: about which there may be 

conflicted personal opinions or infeasible computations, and about 

which the experiment may be silent. 

• In example 1.1, overt random sampling, the key to constructing the 

measure space is to avoid including the tags in the sample space. 

• In example 1.2/1.2
+
, Juhl’s formal learning problem for an re set, 

the key to constructing the measure space is to avoid including the 

(name of) the number tested in the sample space. 

In both examples, the statistician restricts the measure space to a 

proper subset of the “input space” used to solve the problem! 

 



Method 2:  With respect to a particular decision problem, choose wisely 

the set of events E  that you can assess with probabilities.  

 

Coherence (as in de Finetti's theory) requires that you extend these 

probabilities to the linear span generated by E , which may be a smaller 

and simpler set than the Boolean algebra generated by E .   

 

If E  is wisely chosen, the decision problem at hand may be solved by 

the assessments over the smaller space. 

 

Let us review de Finetti’s (1974) two related theorems. 
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The set of events for which a determinate prevision is fixed by the 

previsions for these four events is given by the Fundamental Theorem.  

• That set does not form an algebra.  Only 22 of 64 events (11 pairs of 

complementary events) have precise previsions.   

For instance, by the Fundamental Theorem,  

• Moreover, the smallest algebra containing the 4 events in  is the 

power set of all 64 events on . 



Method 3: Your probabilistic assessments may be incoherent so that 

you may be exposed to a sure-loss in your decision making about some 

specific quantities.   

Nonetheless, you may be able to use familiar algorithms (e.g., Bayes' 

theorem) to update your views with new data and to improve your 

incoherent assessments about these quantities.   

 

That is, you may be able to reduce your degree of incoherence about 

these quantities by active, Bayesian-styled learning.  Specifically, by 

framing your probability space so that incoherence is concentrated in 

your "prior," you may use Bayesian algorithms to update to a less-

incoherent "posterior." 

 

 



Let {E1, …., En} form a partition, and let 0    p(Ei)    1 be the 

Bookie’s previsions for these n-many events.   

• Assume that no one of these previsions is incoherent, by itself. 
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Summary – Three ways of getting to know your probabilities. 

Method 1:  Assess precise/determinate probabilities only for the set of 

random variables that define the decision problem at hand.  Do not 

include other "nuisance" variables in the space of possibilities.   In this 

sense, over-refining the space of possibilities may make assessing 

probabilities infeasible for good decision making. 

 

Method 2:  With respect to a particular decision problem, choose wisely 

the set of events E  that you can assess with probabilities.  Coherence 

requires assessments over a linear span, which may be a much smaller 

set than the algebra (i.e., basic logic) of events for the same events. 

 



Method 3: Your probabilistic assessments may be incoherent so that 

you may be exposed to a sure-loss in your decision making about some 

specific quantities.   

 

Nonetheless, you may be able to use familiar algorithms (e.g., Bayes' 

theorem) to update your views with new data and to improve your 

incoherent assessments about these quantities.   

 

• You don’t have to be coherent to like Bayes’ Theorem! 
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